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Abstract 

In many genotypes, satisfactory adventitious 

rooting of cuttings is achieved by a treatment 

with auxin. There has been no essential 

improvement of this treatment ever since its 

invention in the 1930s. To achieve rooting in 

otherwise recalcitrant genotypes, a donor-

plant pretreatment may be the way out. 

 

INTRODUCTION 

Vegetative propagation depends on the 

ability of the cuttings to form roots, a process 

referred to as adventitious root (AR) 

formation. Despite considerable progress in 

understanding mechanisms underlying AR 

formation, the firstly discovered (in the 1930s) 

method to achieve AR formation, a treatment 

with auxin, is still the only commonly used 

way to induce AR formation (De Klerk et al. 

1999) and no other generally usable rooting 

treatments have been developed even though 

many genotypes are recalcitrant in rooting.  

There is, however, an alternative way to 

improve rooting, viz., a pretreatment of donor 

plants (Massoumi et al. 2017b). In the present 

article, we review the recent findings on the 

effect of the three major donor plant 

pretreatments: rejuvenation, etiolation and 

flooding. Such pretreatments are in particular 

relevant for micropropagation as they can be 

applied more easily in vitro as compared to 

ex vitro. 

 

Rejuvenation 

In plants, three different types of aging have 

been defined: chronological, ontogenetic and 

physiological aging (Wendling et al. 2014a). 

Ontogenetic aging refers to the transition to 

the next developmental stage (from juvenile 
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to adult) and has been extensively studied as 

it is of high practical importance for both 

breeders and plant propagators. Plant 

breeders are interested in shortening juvenile 

stage to be able to evaluate the flowering 

characteristics of new cultivars as early as 

possible and consequently to shorten the 

breeding cycle. Plant propagators, on the 

other hand, are interested to extend the 

juvenile stage as juvenile donor plants are 

more capable of rooting and have a higher 

multiplication rate. The length of the juvenile 

stage may be a few days but also several 

years depending on the species (Poethig, 

1990). In herbaceous species the length of 

juvenile stage is shorter and the 

morphological and physiological changes 

associated with the phase transition are less 

distinct. 

Reduced AR formation potential upon 

maturation has been reported in many plant 

species (Diaz-Sala et al. 2002; Rasmussen et 

al. 2015; Massoumi et al. 2017a). Maturation 

is, however, a reversible process: adult plants 

may be rejuvenated and become again able to 

form ARs e.g., in apple (De Klerk and Ter 

Brugge 1992). Wendling et al. (2014b) have 

reviewed different rejuvenation techniques, 

viz., repeated sub-culturing of in vitro grown 

plants, repeated ex vitro pruning as well as 

sequential grafting of adult scions onto 

juvenile rootstocks to rejuvenate the mature 

plant materials (Wendling et al. 2014b). 

Researchers have attempted to decipher 

mechanisms underlying phase change and its 

effects on adventitious rooting. They first 

tried to link the difference in rooting response 

of juvenile and adult plant materials with 

morphological and anatomical differences. 

For instance, Ballester et al. (1999) studied 

the rooting process in juvenile and mature 

chestnut (Castanea sativa) shoots. However, 

they observed no difference in anatomical 

characteristics between these shoots. Later, 

biochemical and physiological features, 

especially with respect to phytohormones, 

became the center of attention. Although 

auxin is the central player in the induction of 

roots, the phytohormone does not seem to be 

the limiting factor during the maturation-

related decline in rooting potential. It has 

been shown in Pinus sylvestris or Pinus taeda 

that neither auxin uptake and metabolism nor 

its transport correlate with the differences in 

the extent of the formation of ARs (Diaz‐Sala 

et al. 1996).  

At the molecular level, however, the 

difference between juvenile and adult tissues 

became clear. This concerns differences in 

methylation status of DNA and expression of 

microRNAs (miRNAs). In most cases, 

transition from juvenile to adult coincides 

with DNA hypermethylation (increased 

methylation) (Valledor et al. 2007). Changes 

in the methylation status of DNA affect gene 

expression. In particular, a gene that is 

methylated is silenced and cannot be 

transcribed (Grant-Downton and Dickinson 

2005). This may be a reason for the 

maturation-related decline of rooting 

response observed in woody and herbaceous 

plant species. We have shown in Arabidopsis 

that juvenile plant material produce 

significantly more ARs than adult material 

(hypocotyl vs. flower stem explants, Fig. 1, 

left panel). In addition, juvenile plant 

material had lower (ca. 12 vs. 5%) DNA 

methylation status (Massoumi et al. 2017a). 

To promote rooting of adult plant materials 

we did apply 5-azacytidine (a drug that 

reduces methylation status of DNA). When 

applied during seed germination or rooting 

treatment (Fig1. Right panel), 5-azacytidine 

(AzaC) increased rooting of flower stem 

explants and not that of hypocotyl tissues 

indicating that maturation-related loss in 

rooting response is caused by increased DNA 

methylation and can be reversed when 

hypomethylating compound like 5-

azacytidine is applied (Massoumi et al. 

2017a). To promote rooting of adult plant 

materials we did apply 5-azacytidine (a drug 
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that reduces methylation status of DNA). 

When applied during seed germination or 

rooting treatment (Fig1. Right panel), 5-

azacytidine (AzaC) increased rooting of 

flower stem explants and not that of 

hypocotyl tissues indicating that maturation-

related loss in rooting response is caused by 

increased DNA methylation and can be 

reversed when hypomethylating compound 

like 5-azacytidine is applied (Massoumi et al. 

2017a).  

 

 

Figure 1. Left panel: The formation of adventitious roots from juvenile (Hyp; hypocotyl) and 

adult (FS; flower stem) tissues of Arabidopsis cut from plants that had been treated with 30 µM 

of the IAA. Hypocotyl segments were taken from 12d-old seedlings and flower stem segments 

were taken from 5w-old plants (lower 1,5cm of the stem). Middle panel: Rooting of Arabidopsis 

FS segments when AzaC (10 µM) was added during the seed germination (5 weeks) then treated 

with IAA (30 µM).Right panel: Rooting of Arabidopsis FS segments when AzaC (10 µM) was 

added during the rooting treatment with IAA (30 µM). 

 
 

Another striking difference between juvenile 

and adult plant materials is the level of 

miRNA156 (Wu and Poethig 2006). MiR156 

level is high in the juvenile phase, whereas its 

expression decreases during vegetative phase 

change in different plant species, e.g., 

Arabidopsis, maize, Acacia, Eucalyptus, 

Hedera and Quercus (Wu and Poethig 2006; 

Chuck et al. 2007; Wang et al. 2011). 

External factors have been shown to 

influence the level of miR156 in the plants. 

For example, low sugar brought about by leaf 

detachment or reduced photosynthesis 

increase the level of miR156 (Yang et al. 

2013). Overexpression of miR156 (by 

genetic engineering) delays the transition to 

the adult phase (Wu and Poethig 2006; Chuck 

et al. 2007). Recently, Yu et al. (2015a) 

showed that Arabidopsis plants over-

expressing miR156 produce more lateral 

roots than plants overexpressing its target 

mimic, MIM156 (the activity of miR156 is 

blocked), indicating a role for miR156 in 

lateral root development. We have recently 

showed that maturation-related decline in 

adventitious rooting is under the control of 

miR156. Overexpression of miR156, 

increases the capacity of Arabidopsis adult 

 

Means across replicates are presented with SE. Different letters represent means that are significantly 

different at P < 0.05. note that different scales are used in different figures. Derived from Massoumi et 

al. (2017a). 
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tissues to form ARs (Massoumi et al. 2017a). 

Xu et al. (2017) have found similar results in 

apple. They showed that semi-lignified leafy 

cuttings from juvenile phase and rejuvenated 

apple tree (Malus xiaojinensis) show higher 

expression of miR156 which is necessary for 

auxin-induced AR formation. It seems, 

therefore, that miRNA156 plays a role in 

many plant species controlling vegetative 

phase change as well as regulating AR 

formation capacity of the cuttings. Any 

horticultural practice that leads to an increase 

in the level of miR156 can restore juvenile 

characteristics and AR formation. In the next 

two sections, we will discuss the relation 

between environmental factors, miR156 and 

AR formation capacity.  

 As noted before, it has been found in 

the model plant Arabidopsis that a high 

endogenous sugar concentration is related 

with a transition to the adult stage. In 

agreement with this, in lily regenerated in 

tissue culture far more adult plants occur 

when a high level of sucrose was added to the 

medium.  The effect of sucrose on the 

rootability of woody plants has not yet been 

examined. 

 

Etiolation 

Light stands out amongst the environmental 

factors that shape plant development. It has 

always been considered as an important 

parameter in vegetative propagation practices 

when optimizing conditions for rooting of 

cuttings. Different aspects of light, viz., light 

quality, intensity and duration are shown to 

influence the rooting of cuttings (Daud et al. 

2013; Fett-Neto et al. 2001). Such studies 

have highlighted possible synergistic or 

antagonistic effects of light with plant growth 

regulators such as auxin and cytokinins (Fett-

Neto et al., 2001; Wynne and McDonald, 

2002) suggesting the involvement of 

photoreceptors in the regulation of AR 

development. Other research has focused on 

the effect of darkness, referred to as etiolation 

(development of a plant or plant part in the 

absence of light), on improving the rooting of 

cuttings (Klopotek et al. 2010; Massoumi et 

al. 2017b). Similarly, we have found that 

etiolation pretreatment in apple microshoots 

multiplied in vitro promotes adventitious 

rooting (Fig. 2). 

 

Figure 2. Rooting response of apple micro-

cuttings excised from etiolated (for 2 weeks 

during multiplication) and control donor 

plants when NAA was used as auxin. 

 

 
 

Researchers have attempted to explain 

this effect of light. It has been found that 

various anatomical, physiological and 

molecular changes are associated with 

enhanced rooting efficiency in etiolated stem 

tissues (Haissig and Davis 1994; Sorin et al. 

2005). However, there are some reports that 

there is no correlation between anatomical 

differences caused by etiolation and the 

doubling of root number. For example, 

Takahashi et al. (2003) investigated the 

rooting of hypocotyl in Arabidopsis hy4 

mutant (elongation growth of hypocotyls 

occurred in the light as well as in darkness). 

They observed that despite the hypocotyls 

were of sufficient length, no ARs were 

 

Means across replicates are presented with SE. 

note that different scales are used in A and B. 

Means followed by the same letter are not 

statistically different at P = 0.05.  

Massoumi and De Klerk; unpublished 

observations. 
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induced under long day conditions indicating 

that elongated hypocotyl is not of primary 

importance.  

Evaluations concerning changes in 

endogenous IAA levels in cuttings have 

given conflicting results. Kawase and Matsui 

(1980) concluded that etiolation did not 

affect IAA content in hypocotyls of 

Phaseolus vulgaris L. and still others 

(Agulló-Antón et al. 2011; Fett-Neto et al. 

2001) observed an increase of IAA in 

etiolated stem parts. Maynard (1991) showed 

that banding of stem base (covering the base 

of cuttings with black plastic) increases 

sensitivity of the cells to applied auxin. 

Additionally, light would affect the level of 

endogenous auxin either by influencing its 

transport or its metabolism into conjugates or 

via photo-oxidation (Normanly et al. 2004; 

Naqvi and Gordon 1967). 

Apart from a change in auxin level, 

biosynthesis of cytokinins (Agulló-Antón et 

al. 2011; Bollmark and Eliasson 1990), 

ethylene (Cao et al. 1999), flavonoids (Buer 

and Muday 2004), strigolactone (Massoumi 

et al. 2017b) and carbohydrates (Husen 2008; 

Klopotek et al. 2010; Massoumi et al. 2017b) 

have also been reported to be affected in 

response to different light intensities.  

It has also been proposed that increased 

AR formation of cuttings by lower irradiation 

(shading, etiolation) is the result of arresting/ 

or reversing of ontogenetic aging (Husen 

2008; Husen and Pal 2003). Massoumi et al. 

(2017b) applied etiolation as a donor plant 

pretreatment to in vitro grown Arabidopsis 

seedlings. They reported an increased rooting 

response despite a reduction in endogenous 

sugar levels. The authors have speculated that 

reduced endogenous sugar level increases the 

level of miR156 as had been reported by 

(Yang et al. 2013) and this in response 

promotes juvenile characteristics.  

 

 

 

Flooding 

Soil water is another environmental factor 

which causes stresses such as drought or 

waterlogging to affect plant characteristics 

(Promkhambut et al. 2011). Roots are most 

sensitive to flooding and the first to suffer 

from oxygen shortage. Plants use several 

mechanisms to maintain root function 

through an improved oxygen supply during 

flooding. Formation of internal gas channels 

(aerenchyma) (Colmer and Voesenek 2009), 

establishment of a lateral diffusion barrier to 

minimize radial oxygen loss from flooded 

roots to the soil (Bramley et al. 2010), as well 

as initiating organogenesis are adaptive 

mechanisms that have been substantially 

addressed (Maurenza et al. 2012; McDonald 

and Visser 2003; Vidoz et al. 2010; Zhou et 

al. 2012). The latter refer to the formation of 

ARs to replace the original root system. 

In many plant species, e.g., rice, maize, 

Rumex and Arabidopsis, it has been shown 

that ethylene accumulation occurs in the 

submerged tissues (Geisler-Lee et al. 2010; 

Peng et al. 2005; Rieu et al. 2005; Van Der 

Straeten et al. 2001). The role of ethylene in 

controlling AR formation is shown to be 

species specific (Vidoz et al. 2010). For 

instance, in Rumex palustris Sm., ethylene 

increases auxin sensitivity and leads to the 

production of ARs (Visser et al. 1996). In 

deepwater rice, however, ethylene causes the 

death of the epidermal cells that cover the 

root tip and thereby facilitates the emergence 

of pre-formed ARs (Mergemann and Sauter 

2000). In addition, ethylene may affect auxin 

transport, resulting in its accumulation at the 

stem base of flooded plants (Grichko and 

Glick 2001). 

Apart from the positive influence of 

flooding on AR formation when the root 

system is still present, flooding has also been 

reported to have similar positive effects in 

cuttings. Shibuya et al. (2013 and 2014) 

reported that soaking the basal cuttings of 

Carolina poplar (Populus canadensis 
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Moench.) and Japanese cedar (Cryptomeria 

japonica D. Don) in warm water at a 

controlled low-air-temperature improves 

early initiation and development of ARs. 

Massoumi et al. (2017b) applied flooding to 

in vitro grown Arabidopsis seedlings and in 

response rooting of excised stem segments 

increased. At the anatomical level, a massive 

formation of secondary phloem (the tissue 

close to which ARs roots are induced) was 

observed in flooded seedlings. Additionally, 

increased rooting response in flooded donor 

plants was associated with decreased 

endogenous sugar levels similar to what had 

been reported in etiolated seedlings 

(Massoumi et al. 2017b). Possibly, the 

decreased sugar level promoted juvenile 

characteristics via increasing the level of 

miR156 (sugar negatively affects miR156 

level).  

 

 

 

 

 

 

Final remarks 

In horticultural practice, AR formation 

is highly important considering that seventy 

percent of the propagation systems depends 

on successful rooting of cuttings. Despite 

numerous research on understanding the 

underlying mechanisms of AR formation, 

treatment with auxin seems to be the common 

way. However, there is an alternative, 

pretreatment of donor plants to increase 

response of cuttings to applied auxins. In this 

review, we have discussed information about 

the effect of three different donor plants’ 

pretreatments, viz., rejuvenation, etiolation 

and flooding, on the capacity of the cuttings 

to root. These pretreatments affect the 

physiological and biochemical conditions of 

donor plants in a way that rooting is promoted 

and can be used as efficient ways to increase 

AR. This holds in particular for commercial 

micropropagation since donor plants can be 

relatively easily treated. 
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